
On the transformation of series *

Leonhard Euler

§1 Since it is propounded to us to show the use of differential calculus both
in whole analysis and in the doctrine of series, several auxiliary tools from
common algebra which are usually are not treated will have to be repeated
here. Although we covered a very large part of it already in the Introductio,
some things were nevertheless left aside there, either on purpose because it
is convenient to explain them just then when the necessity demands it, or
because all the things which will be necessary could not have been foreseen.
This concerns the transformation of series, to which we devote this chapter
and by means of which a certain series is transformed into innumerable others
such that, if the sum of the propounded series is known, the resulting ones can
all be summed at the same time. But having covered this chapter in advance
we will be able to amplify the doctrine of series by means of differential and
integral calculus even further.

§2 But, we will mainly consider series of such a kind whose single terms
are multiplied by successive powers of a certain undetermined quantity, since
these extend further and are of greater utility.

Therefore, let the following general series be propounded, whose sum, either
known or not, we want to put = S, and let

S = ax + bx2 + cx3 + dx4 + ex5 + etc.

*Original title: “ De Transformatione serierum“, first published as part of the book „Institutio-
nes calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum, 1755“, reprinted
in in „Opera Omnia: Series 1, Volume 10, pp. 217 - 234 “, Eneström-Number E212, translated
by: Alexander Aycock for „Euler-Kreis Mainz“
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Now, put x = y
1+y and because it is by means of infinite series

x = y − y2 + y3 − y4 + y5 − y6 + etc.

x2 = y2 − 2y3 + 3y4 − 4y5 + 5y6 − 6y7 + etc.

x3 = y3 − 3y4 + 6y5 − 10y6 + 15y7 − 21y8 + etc.

x4 = y4 − 4y4 + 10y6 − 20y7 + 35y8 − 35y8 + etc.

etc.,

these values substituted, and having ordered the series according to powers
of y, will give

S = ay− ay2 + ay3 − ay4 + ay5 etc.

+ b − 2b + 3b − 4b

+ c − 3c + 6c

+ d − 3d

+ e

§3 Since we put x = y
1+y , it will be y = x

1−x ; having substituted this value
for y the propounded series

S = ax + bx2 + cx3 + dx4 + ex5 + etc.

will be transformed into this one:

S = a
x

1− x
+ (b− a)

x2

(1− x)2 + (c− 2b + a)
x3

(1− x)3 + etc.,

in which the coefficient of the second term b− a is the first difference of a from
the series a, b, c, d, e etc., which we denoted by ∆a above; the coefficient of the
third term c− 2b + a is the second difference ∆2a; the coefficient of the fourth
is the third difference of ∆3a etc. Hence, using the continued differences of a
which are formed from the series a, b, c, d, e etc. the transformed series will
be transformed into this one

S =
x

1− x
a +

x2

(1− x)2 ∆a +
x3

(1− x)3 ∆2a +
x4

(1− x)4 ∆3a + etc.,
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the sum of which series one will therefore have, if the sum of the propounded
was known.

§4 Therefore, if the series a, b, c, d etc. was of such a nature that it finally
has constant differences which happens if its general term was a polynomial
function then the latter series x

1−x a + x2

(1−x)2 ∆a+etc. finally will have vanishing
terms and so its sum can be exhibited by means of a finite expression. So, if
the first differences of the series a, b, c, d etc. already were constant, then the
sum of this series ax + bx2 + cx3 + dx4 + etc. will be

=
x

1− x
a +

x2

(1− x)2 ∆a.

But if the second differences of the coefficients of that series become constant,
then the sum of the propounded series itself will be

=
x

1− x
a +

x2

(1− x)2 ∆a +
x3

(1− x)3 ∆∆a.

Hence, the sums of series of this kind are easily found from the differences of
the coefficients.

I. Let the sum of this series be sought after

1x + 3x2 + 5x + 7x4 + 9x5 + etc.,

Diff. I 2, 2, 2, 2 etc.

Since therefore the first differences are constant, because of a = 1 and ∆a = 2
the sum of the propounded series will be

=
x

1− x
+

2xx
(1− x)2 =

x + xx
(1− x)2 .

II. Let the sum of this series be sought after

1x + 4xx + 9x3 + 16x4 + 25x5 + etc.

Diff. I 3, 5, 7, 9, etc.

Diff. II 2 2 2 etc.
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Since therefore it is a = 1, ∆a = 3, ∆2a = 2, the sum of the propounded series
will be

=
x

1− x
+

3xx
(1− x)2 +

2x3

(1− x)3 =
x + xx
(1− x)3 .

III. Let the sum of this series be sought after

S = 4x + 15x2 + 40x3 + 85x4 + 156x5 + 259x6 + etc.

Diff. I 11, 25, 45, 71, 103 etc.

Diff. II 14, 20, 26, 32, etc.

Diff. III 6, 6, 6, etc.

Because it is a = 4, ∆a = 11, ∆2a = 14, ∆3a = 6, the sum will be

S =
4x

1− x
+

11xx
(1− x)2 +

14x3

(1− x)3 +
6x4

(1− x)4

or

S =
4x− xx + 4x3 − x4

(1− x)4 =
x(1 + xx)(4− x)

(1− x)4 .

§5 Although this way the sums of these series continuing to infinity are
found, nevertheless from the same principles these series can also be summed
up to a given term. For, let this series be propounded

S = ax + bx2 + cx3 + dx4 + · · · · · ·+ oxn,

and let its sum be sought after, if its proceeds to infinity, which will be

=
x

1− x
a +

x2

(1− x)2 ∆a +
x3

(1− x)3 ∆2a + etc.

Now, consider the terms of the same series following after the last oxn which
shall be

pxn+1 + qxn+2 + rxn+3 + sxn+4 + etc.;
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the sum of this series, if it is divided by xn, can be found as before; this,
multiplied by xn again, will be

xn+1

1− x
p +

xn+2

(1− x)2 ∆p +
xn+3

(1− x)3 ∆2 p + etc.;

if the sum of this series is subtracted from the sum of the series continued to
infinity, the sum of the propounded portion sought after will remain

S =
x

1− x
(a− xp) +

x2

(1− x)2 (∆a− xn∆p) +
x3

(1− x)3 (∆
2a− xn∆2 p) + etc.

I. Let the sum of this finite series be sought after

S = 1x + 2x2 + 3x3 + 4x4 + · · · · · · nxn.

Seek for the differences so of these coefficients as of the ones following the
last term

1, 2, 3, 4, etc.

1, 1, 1, etc.

n + 1, n + 2, n + 3, etc.

1, 1, etc.
and it will be a = 1, ∆a = 1, p = n + 1, ∆p = 1, whence the sum sought after
is

s =
x

1− x
(1− (n + 1)xn) +

x2

(1− x)2 (1− xn)

or

S =
x− (n + 1)xn+1 + nxn+2

(1− x)2 .

I. Let the sum of this finite series be sought after

S = 1 + x + 4x + 9x3 + 16x4 + · · · · · ·+ n2xn.

At first, investigate the differences this way

1, 4, 9, 16, etc.

3, 5, 7, etc.

2, 2, etc.

(n + 1)2, (n + 2)2, (n + 3)2, etc.

2n + 3, 2n + 5, etc.

2, etc.
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having found which the sum sought after will be

S =
x

1− x
(1− (n + 1)2xn) +

x2

(1− x)2 (3− (2n + 3)xn) +
x3

(1− x)3 (2− 2xn)

or

S =
x + xx− (n + 1)2xn+1 + (2nn + 2n− 1)xn+2 − nnxn+3

(1− x)3 .

§6 But if the propounded series does not have coefficients of such a kind,
which are finally led to constant differences, then the transformation exhibited
here is not of any use to determine its sum. Nevertheless the sum can be
approximated in a more convenient way by means of it than it is possible
by addition of the propounded series itself. For, if in the series ax + bx2 +
cx3 + dx4 + etc. it was x < 1, in which case alone the summation in the
sense explained above can hold, it will be x

1−x > x and hence the new series
converges less the propounded one. But if in the propounded series it was
x = 1, then all the terms of the new series become infinite, in which case this
transformation will therefore will be completely useless.

§7 Let us consider the series in which the signs + and − alternate which
will be deduced from the preceding by putting x negative. If it therefore was

S = ax− bx2 + cx3 − dx4 + ex5 − etc.,

the negative of which series arises, if in the preceding x is put negative;
therefore, as before let us take the differences ∆a, ∆2a, ∆3a etc. from the series
of coefficients a, b, c, d, e etc., having related the signs solely to the powers of
x, and the propounded series will be transformed into this one

S =
x

1 + x
a− x2

(1 + x)2 ∆a +
x3

(1 + x)3 ∆2a− x4

(1 + x)4 ∆3a + etc.,

whence it is seen that the propounded equation can be summed in the same
cases as the preceding, of course, if the series a, b, c, d etc. is finally led to
constant differences.
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§8 But in this case, this transformation yields a convenient approximation to
the value of the propounded series ax− bx2 + cx3− dx4 + ex5− f x6 + etc.; for,
no matter how large the number x is, the fraction x

1+x , in powers of which the
other series is expanded, becomes smaller than unity; and if x = 1, it will be

x
1+x = 1

2 . But if it is x < 1, say x = 1
n , it will be x

1+x = 1
n+1 and hence the series

found by means of the transformation will always converge more than the
propounded one. Let us especially consider the case, in which x = 1, which
offers a huge amount of help for the summation of series, and let be

S = a− b + c− d + e− f + etc.,

and denote the first, second and following differences of a, which the progres-
sion a, b, c, d, e etc. yields, by ∆a, ∆2a, ∆3a etc.; having found these, it will
be

S =
1
2

a− 1
4

∆a +
1
8

∆2a− 1
16

∆3a + etc.,

which, if it is not actually terminated, exhibits the approximate sum sufficiently
convenient.

§9 Therefore, let us show the use of this last transformation, in which we
took x = 1, in some examples and at first certainly in examples of such a kind,
in which the true sum can be expressed finitely. Such series are divergent
series, in which the numbers a, b, c, d etc. finally lead to constant differences;
since the sums of these in the usual reception of the word sum can not be
exhibited, we understand the word sum here in this sense, which attributed
to it above [§ 111 of the first part], such that it denotes the value of the finite
expression, from the expansion of which the propounded series arises.

I. Therefore, let this series due to Leibniz be propounded

S = 1− 1 + 1− 1 + 1− 1 + etc.;

because in this series all terms are equal, all differences will become = 0 and
hence because of a = 1 it will be S = 1

2 .

II. Let this series be propounded
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S = 1− 2 + 3− 4 + 5− 6 + etc.

Diff. I 1, 1, 1, 1, 1 etc.

Because it therefore is a = 1, ∆a = 1, it will be S = 1
2 −

1
4 = 1

4 .

III. Let this series be propounded

S = 1− 3 + 5− 7 + 9− etc.

Diff. II 2, 2, 2, 2, etc.

Because of a = 1 and ∆a = 2 it is S = 1
2 −

2
4 = 0.

IV. Let this series of the triangular numbers be propounded

1− 3 + 6− 10 + 15− 21 + etc.

Diff. I 2, 3, 4, 5, 6, etc.

Diff. II 1 1, 1, 1 etc.

Here, because of a = 1, ∆a = 2 and ∆∆a = 1 it will therefore be S =
1
2 −

2
4 +

1
8 = 1

8 .

V. Let the series of the squares be propounded

S = 1− 4 + 9− 16 + 25− 36 + etc.

Diff. I 3, 5, 7, 9, 11, etc.

Diff. II 2 2, 2, 2 etc.

Because of a = 1, ∆a = 3, ∆∆a = 2 it will be S = 1
2 −

3
4 +

2
8 = 0.

VI. Let this series of the bisquares be propounded
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S = 1− 16 + 81− 256 + 625− 1296 + etc.

Diff. I 15, 65, 175, 175, 369, 671, etc.

Diff. II 50, 110, 194, 302, etc.

Diff. III 60, 84, 108, etc.

Diff. IV 24, 24, etc.

Therefore, it will be S = 1
2 −

15
4 + 50

8 −
60
16 +

24
32 = 0.

§10 If the series diverges more, as the geometric series and other similar
ones, this way these are immediately transformed into a more convergent
series which, if they did not already converge sufficiently enough, in the same
manner will be converted into another more convergent ones.

I. Let this geometric series be propounded

s = 1− 2 + 4− 8 + 16− 32 + etc.

Diff. I 1, 2, 4, 8, 16, etc.

Diff. II 1, 2, 4, 8, etc.

Diff. III 1, 2, 4, etc.

Because therefore in all these differences the first term is = 1, the sum of the
series will be expressed this way

S =
1
2
− 1

4
+

1
8
− 1

16
+

1
32
− 1

64
+ etc.,

the sum of which is = 1
3 ; for, it arises from the expansion of the fraction 1

2+1 ,
whereas the propounded arises from 1

1+2 .

II. Let this recurring series be propounded

S = 1− 2 + 5− 12 + 29− 70 + 169− etc.

9



Diff. I 1, 3, 7, 17, 41, 99, etc.

Diff. II 2, 4, 10, 24, 58, etc.

Diff. III 2, 6, 14, 34, etc.

Diff. IV 4, 8, 20, etc.

Diff. V 4, 12, etc.

Diff. VI 8, etc.

etc.

Therefore, the first terms of the continued differences constitute this doubled
geometric series 1, 1, 2, 2, 4, 4, 8, 8, 16, 16 etc., whence it will be

S =
1
2
− 1

4
+

2
8
− 2

16
+

4
32
− 4

64
+

8
128
− etc.;

because therefore except from the first each two remaining cancel each other,
it will be S = 1

2 . But the propounded series arises from the expansion of the
fraction 1

1+2−1 = 1
2 , as we showed in the expression of the nature of recurring

series.

III. Let the hypergeometric series be propounded

S = 1− 2 + 6− 24 + 120− 720 + 5040− etc.,

whose continued differences we will investigate more convenient this way:

Diff. I Diff. II Diff. III

1 1 3 11

2 4 14 64

6 18 78 426

24 96 504 3216

120 600 3720 27240 etc.

720 4320 30960 256320

5040 35280 287280 2656080

40320 322560 2943360

362880 3265920

3628800
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Having further continued these differences it will be

S =
1
2
− 1

4
+

3
8
− 11

16
+

53
32
− 309

64
+

2119
128
− 16687

256
+

148329
512

− 1468457
1024

+
16019531

2048
− 190899411

4096
+ etc.

Collect the two initial terms and it will be S = 1
4 + A where

A =
3
8
− 11

16
+

53
32
− 309

64
+

2119
128
− etc.

If now in the same way the differences are taken, it will be

A =
3
24 −

5
26 +

21
28 −

99
210 +

615
212 −

4401
214 +

36585
216 −

342207
218

+
3565323

220 − 40866525
222 + etc.

Collect the two initial terms, because they converge, and it will be A = 7
26 + B

while B = 21
28 − 99

210 + etc.; by again taking the differences of this series it will
be

B =
21
29 −

15
212 +

159
215 −

429
218 +

5241
221 −

26283
224 +

338835
227 − 2771097

230 + etc.

Collect the four initial terms together to one and put B = 153
212 + 843

220 + C while

C =
5241
221 −

26283
224 + etc.

and by actually summing up some terms it will approximately be C = 15645
224 −

60417
230 . From these therefore finally the sum of the series will be concluded to

be S = 0.40082055, which can nevertheless only be deemed accurate hardly
further than three or four figures because of the the divergence of the series; it
is nevertheless certainly smaller than the correct value. For, I elsewhere found
this sum to be = 0.4036524077, where not even the last digit deviates from the
true value.
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§11 But this transformation is especially highly useful to transform already
but slowly converging series into others which converge a lot more rapidly.
Since indeed the following terms are smaller than the preceding ones, the first
differences become negative; hence, in the following the nature of the sign is
carefully to be taken into account.

I. Let this series be propounded

S = 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6
+ etc.

Diff. I − 1
2

, − 1
2 · 3, − 1

3 · 4, − 1
4 · 5,

1
5 · 6 etc.

Diff. II +
1
3

,
2

2 · 3 · 4,
2

3 · 4 · 5,
2

4 · 5 · 6etc.

Diff. III − 1
4

, − 2 · 3
2 · 3 · 4 · 5, − 2 · 3

3 · 4 · 5 · 6
Diff. II +

1
5

etc.

etc.

Hence, it will therefore be

S =
1
2
+

1
2 · 4 +

1
3 · 8 +

1
4 · 16

+
1

5 · 32
+ etc.;

but that both series exhibit the hyperbolic logarithm of two we already showed
in the Introductio.

II. Let this series for the circle be propounded

Diff. I − 2
1 · 3, − 2

3 · 5, − 2
5 · 7, − 2

7 · 9, − 2
9 · 11

etc.

Diff. II +
2 · 4

1 · 3 · 5,
2 · 4

3 · 5 · 7,
2 · 4

5 · 7 · 9,
2 · 4

7 · 9 · 11
etc.

Diff. III − 2 · 4 · 6
1 · 3 · 5 · 7,

2 · 4 · 6
3 · 5 · 7 · 9 etc.
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Hence, it is therefore concluded that also be the sum of the series will also be

S =
1
2
+

1
3 · 2 +

1 · 2
3 · 5 · 2 +

1 · 2 · 3
3 · 5 · 7 · 2 + etc.

or

2S = 1 +
1
3
+

1 · 2
3 · 5 +

1 · 2 · 3
3 · 5 · 7 +

1 · 2 · 3 · 4
3 · 5 · 7 · 9 + etc.

III. Let the value of this infinite series be sought after

S = ln 2− ln 3 + ln 4− ln 5 + ln 6− ln 7 + ln 8− ln 9 + etc.

Since the differences at the beginning become too unequal, actually collect the
terms up to ln 10 from tables, whose value will be found to be = −0.3911005,
and it will be

S = −0.3911005 + ln 10− ln 11 + ln 12− ln 13 + ln 14− ln 15 + etc.

up to infinity. Take those logarithms from tables and look for their differences
this way:

Diff. I Diff. II Diff. III Diff. IV Diff. V

ln 10 = 1.0000000 + − + − +

ln 11 = 1.0413927 413927

36042

ln 12 = 1.0791812 377885 5779

30263 1292

ln 13 = 1.1139434 347622 4487 368

25776 924

ln 14 = 1.1461280 321846 3563

22213

ln 15 = 1.1760913 299633
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From these it is found

ln 10− ln 11 + ln 12− ln 13 + etc.

=
1.0000000

2
− 413927

4
− 36042

8
− 5779

16
− 1292

32
− 368

64
= 0.4891606.

Hence, the value of the propounded series will be

S = ln 2− ln 3 + ln 4− ln 5 + etc. = 0.0980601,

to which logarithm corresponds the number 1.253315.

§12 As we obtained these transformations by putting the fraction y
1±y instead

of x in the series, so innumerable other transformations will arise, if for x
other functions of y are substituted. Let again this series be propounded

S = ax + bx2 + cx3 + dx4 + ex5 + f x6 + etc.

and put x = y(1− y) having done which the following series will arise

S = ay− ayy

+ byy− 2by3 + by4

+ cy3 − 3cy4 + 3cy5 − cy6

+ dy4 − 4dy5 + 6y6

+ ey5 − 5y6

+ f y6 etc.

Therefore, if the one of these series was summable, at the same time the sum
of the other will be known. So, if one puts

S = x + x2 + x3 + x4 + x5 + etc. =
x

1− x
,

it will be

S = y− y3 − y4 + y6 + y7 − y9 − y10 + etc.

The sum of this series will therefore be = y−yy
1−y+yy .
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§13 When the one series is truncated anywhere, then the sum of the first can
be exhibited explicitly. Let us put that it is a = 1 and in the found series all
terms after the first vanish that it is S = y, and hence because of x = y− yy

the sum of the first will be = 1
2 −

√
1
4 − x. But because of a = 1 it will be as

follows

b = 1 =
1
4
· 22

c = 2 =
1 · 3
4 · 6 · 2

4

d = 5 =
1 · 3 · 5
4 · 6 · 8 · 2

6

e = 14 =
1 · 3 · 5 · 7
4 · 6 · 8 · 10

· 28

f = 42 =
1 · 3 · 5 · 7 · 9

4 · 6 · 8 · 10 · 12
· 210

g = 132 =
1 · 3 · 5 · 7 · 9 · 11

4 · 6 · 8 · 10 · 12 · 14
· 212

etc.,

whence the first series will go over into this one

S =
1
2
−

√
1
4
− x = x + x2 + 2x3 + 5x4 + 14x5 + 42x6 + 132x7 + etc.,

which same series is found, if the surdic quantity
√

1
4 − x is expanded into a

series and is subtracted from 1
2 .

§14 Let us put, that the transformation extends further, x = y(1 + ny)ν and
the propounded series

S = ax + bx2 + cx3 + dx4 + ex5 + etc.

will be transformed into the following
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S = ay +
ν

1
nay2 +

ν(ν− 1)
1 · 2 n2ay3 +

ν(ν− 1)(ν− 2)
1 · 2 · 3 n3ay4 +

ν(ν− 1)(ν− 2)(ν− 3)
1 · 2 · 3 · 4 n4ay5

+ b y2 +
2ν

1
nb y3 +

2ν(2ν− 1)
1 · 2 n2b y4 +

2ν(2ν− 1)(2ν− 2)
1 · 2 · 3 n3b y5

+ c y3 +
3ν

1
nc y4 +

3ν(3ν− 1)
1 · 2 n2c y5

+ d y4 +
4ν

1
nd y5

+ e y5

etc.

If therefore the sum of that series was known, one will at the same time also
have the sum of this one and vice versa. Since n and ν can be taken ad libitum,
hence from one summable series innumerable other summable ones can be
found.

§15 One can also do transformations of such a kind that the sum of the
found series becomes irrational in the following way.

Let this series be propounded

S = ax + bx3 + cx5 + dx7 + ex9 + f x11 + etc.;

it will be

Sx = ax2 + bx4 + cx6 + dx8 + ex10 + f x12 + etc.

Now, put

x =
y√

1− nyy
;

it will be xx = y2

1−nyy and the propounded series will be transformed into this
one
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Sy√
1− nyy

= ay2 + nay4 + n2ay6 + n3a y8 + n4a y10 + etc.

+ b y4 + 2nby6 + 3n2by8 + 4n3by10 + etc.

+ c y6 + 3nc y8 + 6n2cy10 + etc.

+ d y8 + 4nd y10 + etc.

+ e y10 + etc.

etc.

Therefore, if the sum S was known from the first series, one will at the same
time have the sum of the following series

S√
1− nyy

= ay+(na+ b)y3 +(n2a+ 2nb+ c)y5 +(n3a+ 3n2b+ 3nc+ d)y7 + etc.

§16 If one takes n = −1, the coefficients of this series will be the continued
differences of a from the series a, b, c, d etc.; but if the signs in the propounded
series alternate, then having put n = 1 the coefficients will be these diffe-
rences. Therefore, let ∆a, ∆2a, ∆3a, ∆4a etc. denote the first, second, third etc.
differences of a from the series of the numbers a, b, c, d, e, f etc. And if it was

S = ax + bx3 + cx5 + dx7 + ex9 + etc.,

having put x = y√
1+yy

it will be

S√
1 + yy

= ay + ∆a · y3 + ∆2a · y5 + ∆3a · y7 + etc.

But if it was

S = ax− bx3 + cx5 − dx7 + ex9 − etc.

and one puts x = y√
1−yy

, it will be

S√
1− yy

= ay− ∆a · y3 + ∆2a · y5 − ∆3a · y7 + etc.

If therefore the series a, b, c, d, e etc. finally leads to constant differences, then
both series can be summed explicitly; but this summation also following from
the superior paragraphs.
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§17 Let us put that the coefficients a, b, c, d etc. constitute this series

1,
1
3

,
1
5

,
1
7

,
1
9

etc.

and it will be, as we already saw above [§11, II],

a = 1, ∆a = −2
3

, ∆2a =
2 · 4
3 · 5, ∆3a = −2 · 4 · 6

3 · 5 · 7 etc.,

whence we will sum the following two series.

I. Let S = x + 1
3 x3 + 1

5 x5 + 1
7 x7 + etc.; it will be S = 1

2 ln 1+x
1−x . Now, having

put x = y√
1+yy

, it will be

S =
1
2

ln

√
1 + yy + y√
1 + yy− y

= ln(
√

1 + yy + y),

whence it will be

ln(
√

1 + yy + y)√
1 + yy

= y− 2
3

y3 +
2 · 4
3 · 5y5 − 2 · 4 · 6

3 · 5 · 7y7 + etc.

II. Let S = x− 1
3 x3 + 1

5 x5 − 1
7 x7 + etc.; it will be S = arctan x. Now, having

put x = y√
1−yy

it will be

S = arctan
y√

1− yy
= arcsin y = arccos

√
1− yy.

Therefore, one will obtain this summation

arcsin y√
1− yy

= y +
2
3

y3 +
2 · 4
3 · 5y5 +

2 · 4 · 6
3 · 5 · 7y7 + etc.

§18 One can also substitute transcendental functions of y for x and so can
find other summations more difficult to find; but nevertheless, that the new
series do not become too complex, one has to pick functions of such a kind,
whose powers can easily be exhibited, as it is the case for the exponential
quantities ey. Therefore, having propounded this series

S = ax + bx2 + cx3 + dx4 + ex5 + f x6 + etc.
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put x = enyy where e denotes the number whose hyperbolic logarithm is = 1;
it will be x2 = e2nyy2, x3 = e3nyy3 etc. In general, it is indeed, as it is known,

ez = 1 + z +
z2

1 · 2 +
z3

1 · 2 · 3 +
z4

1 · 2 · 3 · 4 + etc.

Therefore, the propounded series will be transformed into this one

S = ay + 1nay2 +
1
2

n2ay3 +
1
6

n3ay4 +
1
24

n4ay5 + etc.

+ b y2 +
2
1

nb y3 +
4
2

n2by4 +
8
6

n3b y5 + etc.

+ c y3 +
3
1

nc y4 +
9
2

n2c y5 + etc.

+ d y4 +
4
1

nd y5 + etc.

+ e y5 + etc.

etc.

I. Let the geometric series be propounded S = x + x2 + x3 + x4 + x5 + etc.;
it will be S = x

1−x . Now, put n = −1 that it is x = e−yy and S = e−yy
1−e−yy = y

ey−y ;
one will find this sum

y
ey − y

= y− 1
2

y3 − 1
6

y4 +
5
24

y5 +
19
120

y6 − etc.,

the law of which series is not recognized.

II. In the other series, let all terms except the first be = 0; it will be

b = −na, c =
3
2

n2a, d = −8
3

n3a, e =
125
24

n4a, f = −54
5

n5a etc.

Because therefore the sum is S = ay and x = yeny, it will be

y = x− nx2 +
3
2

n2x3 − 8
3

n3x4 +
125
24

n4x5 − 54
5

n5x6 + etc.

Since in these series the law of progression is not manifest, the summati-
ons deduced from this substitution have hardly any use. But especially the
transformations derived from the substitution x = y

1±y , which not only yield
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extraordinary summations but also appropriate ways to approximate the sums
of series, deserve to be mentioned. Therefore, having mentioned these things
in advance, which were done without differential calculus, we want to proceed
to show the use of this calculus in the doctrine of series itself.
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